If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2=205
We move all terms to the left:
16t^2-(205)=0
a = 16; b = 0; c = -205;
Δ = b2-4ac
Δ = 02-4·16·(-205)
Δ = 13120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13120}=\sqrt{64*205}=\sqrt{64}*\sqrt{205}=8\sqrt{205}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{205}}{2*16}=\frac{0-8\sqrt{205}}{32} =-\frac{8\sqrt{205}}{32} =-\frac{\sqrt{205}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{205}}{2*16}=\frac{0+8\sqrt{205}}{32} =\frac{8\sqrt{205}}{32} =\frac{\sqrt{205}}{4} $
| 0=16t^2+205 | | 4(x-7)=3(2x+3) | | 9,600=60/100x+x | | -47+9x=-2x+19 | | 2y+6(y-2)=8 | | -3(5-2x)=6-9(×-1) | | u-1/2=3 | | -3(5-2x)=6-9(x-1) | | 6a-7=3(2a+1) | | 2(u-3)=4 | | 10+-5x=21-6x | | 7*3^2x=567 | | 10+-5x=21-5x | | Y=0.625x^2+5x | | 4x-19+2x+13=360 | | -4y+12=4(3-y) | | 3x−12=x+14 | | 26=v+8 | | 26+v=8 | | 28=v+8 | | .75y=45 | | –5j=–4j+9 | | m=m^2-4m-14 | | (10^2x-3)+4=21 | | v+5/3=2 | | –4r=–5r+5 | | 2(2c+34)=98 | | 7x2=x+8 | | –h=10+9h | | 30-3x=180 | | 10^2x-3+4=21 | | b2/9=1 |